Originally published August 14, 2014
As much of the state is just gearing up for harvest of corn, soybeans and grain sorghum, it is time to start preparing for the state’s wheat crop. While wheat planting is still months away, it is this early season management that begins to determine the yield potential for the upcoming season.
Choosing varieties for the upcoming season is potentially your most important decision prior to planting. Most producers agree that grain yield is the most important criterion for variety selection. However, there are many aspects of grain yield that need to be evaluated when selecting varieties. Two-year average yields give some indication of stability. This not only demonstrates the performance of varieties across various growing environments but also attempts to minimize environmental influence on variety performance (i.e. current year was better for early- or late-maturing varieties). Additionally, test weight is important because varieties with low test weight may result in the producer being docked at the mill. Therefore, when evaluating variety yield performance, it is essential to use as many parameters as possible.
Heading day, plant height, lodging and disease susceptibility are also important selection criteria. Heading day allows producers to gauge relative maturity of the individual variety. Early-heading and maturing varieties permit earlier harvest and timelier planting in a double-cropping system, while later-heading varieties guard against damage from a late spring freeze and can be planted a little earlier. Early-heading varieties should be planted in the second half of the recommended planting window to avoid the likelihood of spring freeze damage. Lodging resistance helps in some years. Intense storms can occur during late grain fill and cause severe lodging, which results in lower test weight, decreased yields and lower harvest efficiency. Disease susceptibility is very important in terms of yield and profitability. It should be noted that varieties less susceptible to disease may not always produce the highest yields, especially if disease pressure is not present. However, in high disease pressure situations, the resistance may result in higher yields as well as enhanced profitability by saving the costs of fungicide applications. Therefore, managers and producers must weigh the benefits of disease susceptibility with potential yields.
Planting dates for Louisiana wheat depend on location and variety. For southern and central Louisiana optimum planting dates range from November 1 through November 30. The optimum planting for northern Louisiana is slightly earlier, ranging from October 15 through November 15. Early-heading varieties should generally be planted after the mid-date, while late-heading varieties can be pushed a little on the early side of the planting window. The weather in north Louisiana is cooler in the fall and early winter, which slows growth and prevents excess winter growth. It is important that the wheat crop be well-established and fully tillered before going dormant in the coldest part of the winter. Additionally, because of the cooler conditions, the threat for fall pests (Hessian fly, army worms and rust) are decreased earlier in the fall compared to south and central Louisiana. While these dates are the optimum planting window averaged over years, the timing will vary in some years depending on weather patterns. Additionally, if wheat cannot be planted within these optimum windows, planting later than the optimum window would be preferred. Early planting can result in greater insect and fall rust establishment and also makes plants more prone to spring freeze injury due to excessive fall growth and development. Planting too late (more than 14 days after the optimum window) can result in significant stand loss due to slow emergence and seed rotting and can decrease yield potential due to poor tillering and decreased canopy density.
Wheat can be planted by broadcasting seed and incorporating; however, it is preferred that the seed be drilled. Drilling the seed increases the uniformity of depth and stand. If drill seeding, wheat should be planted at a rate of 60 to 90 pounds per acre of high quality seed into a good seedbed with adequate moisture. If the seed is broadcast, seeding rates should be increased to 90 to 120 pounds of high quality seed to account for decreased germination and emergence. This higher seeding rate should be adapted for conditions in which high germination or emergence is not expected, as with late-planted wheat or heavy, wet soils. Late-planted seed should be planted at a higher seeding rate using a drill to ensure rapid, adequate and uniform emergence.
Nitrogen fertilization of wheat can be a challenging aspect of production. Total N application should normally range from 90 to 120 pounds per acre, but this will vary depending on soil type and rainfall after applications. Timing of N application depends on several factors. The wheat crop needs adequate N in the fall and early winter to establish ground cover and properly tiller; however, excessive levels of fall N can result in rank growth and increased lodging potential, as well as a higher probability of spring freeze damage from early heading. If the wheat crop is following soybeans, soil residual or mineralizable N should be adequate for fall growth, and no pre-plant N is needed. However, if the wheat crop follows corn, sorghum, rice or cotton, the application of 15 to 20 pounds of N per acre would typically be beneficial. Where the wheat crop is planted later than optimum, additional N may be necessary to ensure adequate fall growth prior to winter conditions. If the wheat crop did not receive a fall application and appears to be suffering from N deficiency in January, the initial topdress N application can be made early to promote additional tillering. Early spring is when the majority of N for the wheat crop should be applied. There is no universal rule on how early spring N should be applied. Each field should be evaluated based on tillering, stage of development, environmental conditions and crop color. A crop that has good growth and good color should not need N fertilization prior to erect leaf sheath (Feekes 5), usually sometime in February. However, first spring fertilizer application should be applied prior to first node (Feekes 6) in order to ensure optimum head development, tiller retention and head size. Crop N stress around jointing (Feekes 6) will result in yield losses. Any additional N applied following flag leaf typically contributes very little to crop yield. Splitting topdress N into two or three applications is common in Louisiana production systems due to the increased risk of N losses often associated with heavy rainfall and our long growing season. Splitting N typically occurs by applying fertilizer N at or just prior to jointing with a second application occurring 14 to 28 days later. About 50 percent of the topdress N is normally applied with the first split, but this may be decreased if the first split is put out early and plants are not well enough developed to take up that much N.
Phosphorus, K, and micronutrients should be applied in the fall based on soil test reports. All fertilizers applied as well as lime should be incorporated into the soil prior to planting. Required lime should be applied as soon as possible because it takes time for the lime to begin to neutralize the acidity of most soils. The application of sulfur is a growing concern in Louisiana production systems, with increasing deficiencies appearing every year. Oftentimes, early spring S deficiencies are mistaken for N deficiencies and additional S is not applied. Because sulfur is mobile, similar to N, the application solely in the fall will not be adequate. Supplemental applications of S with spring N applications are often warranted.
For further questions or comments contact:
Josh Lofton, Wheat Extension Specialist, jlofton@agcenter.lsu.edu
Steve Harrison, Small Grain Breeder, sharrison@agcenter.lsu.edu